상세 컨텐츠

본문 제목

Ideal CSTR

Modeling/Mathematica

by synbio 2020. 12. 6. 00:32

본문

Multiple reactions in a gas phase

A + B ->  D       (1) desired reaction

2A ->  U           (2) byproduct

 

List of initial constants

k1 = 0.7;

k2 = 0.6;

P0 = 10;

T0 = 373.15;

CT0 = P0/(0.082 T0);

v0 = 100.0;

FT0 = CT0 v0;

FA0 = 1/2 FT0;

FB0 = 1/2 FT0;

V = 500.0;

 

List of functions

1) Solve nonlinear equations for molar flow rate of each species

sol = FindRoot [{

FA0 - FA - (k1 ((CT0^2 FA FB)/FT^2) + k2 (CT0^2 (FA/FT)^2)) V == 0,

FB0 - FB - (k1 ((CT0^2 FA FB)/FT^2)) V == 0,

-FD + k1 ((CT0^2FA FB)/FT^2) V == 0,

-FU + k2/2 (CT0^2 (FA/FT)^2) V == 0, FT - FA - FB - FD - FU == 0},

{FA , FA0}, {FB, FB0}, {FD , 0}, {FU, 0}, {FT, FT0}];

CA = CT0 Evaluate[FA /. sol]/Evaluate[FT /. sol];

CB = CT0 Evaluate[FB /. sol]/Evaluate[FT /. sol];

CD = CT0 Evaluate[FD /. sol]/Evaluate[FT /. sol];

CU = CT0 Evaluate[FU /. sol]/Evaluate[FT /. sol];

Print["CA = ", CA, " CB = ", CB, " CD = ", CD, " CU = ", CU]

 

2) obtain conversion and selectivity

x = (FA0 - Evaluate[FA /. sol])/FA0;

Print["Conversion = ", x]

SDU = Evaluate[FD /. sol] / Evaluate[FU /. sol];

Print["Selectivity = ", SDU]

 

 

'Modeling > Mathematica' 카테고리의 다른 글

Molecular dynamics simulation of driven oscillators  (0) 2020.12.06
Monte Carlo simulation of Leonnard-Jones fluid  (0) 2020.12.06
Axial dispersion model  (0) 2020.12.06
Ideal PFR  (0) 2020.12.06
Ideal Batch Reactor  (0) 2020.12.06

관련글 더보기

댓글 영역